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Abstract: Dysfunction in 7 nicotinic acetylcholine receptor (nAChR), a member of the Cys-loop 
ligand-gated ion channel superfamily, is responsible for attentional and cognitive deficits in Alz-
heimer's disease (AD). To provide useful information for finding drug candidates for the treatment 
of AD, a study was carried out according to the following procedures. (1) DMXBA, a partial agonist 
of the 7 nAChR, was used as a template molecule. (2) To reduce the number of compounds to be considered, the similar-
ity search and flexible alignment were conducted to exclude those molecules which did not match the template. (3) The 
molecules thus obtained were docked to 7 nAChR. (4) To gain more structural information, the molecular dynamics 
(MD) simulations were carried out for 9 most favorable agonists obtained by the aforementioned docking studies. (5) By 
analyzing the hydrogen bond interaction and hydrophobic/hydrophilic interaction, the following seven compounds were 
singled out as possible drug candidates for AD therapy: gx-50, gx-51, gx-52, gx-180, open3d-99008, open3d-51265, 
open3d-60247. 
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INTRODUCTION 

 Alzheimer’s disease (AD) is the most common cause of 
senile dementia. The development of the disease is accom-
panied with the gradual spread of sticky plaques and clumps 
of tangled fibers that disrupt the delicate organization of 
nerve cells in the brain, undermining the normal communica-
tion among brain cells. Alzheimer’s disease is a kind of pro-
tein structure disease; it is caused by incorrect folding of 
proteins [1-4]. Experiments showed that Taiho Pharmaceuti-
cal Company’s new drug DMXBA, (3-[(2,4-dimethoxy) 
benzylidene]-anabaseine), a synthetic benzylidene derivative 
of anabaseine which was isolated from the nemertine worm 
Amphiporus lactifloreus, can improve the cognition condi-
tion and memory of the patients through selectively stimulat-
ing the 7 nAChR. The hydroxyl metabolites of DMXBA, 
which have been proved to be more effective at stimulating 

7 nAChR in vitro, do not work as effective as DMXBA in
vivo for their higher polarity that prevents them from enter- 
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ing the brain [5, 6]. Molecular modeling studies suggest that 
the volumes of DMXBA and its metabolites are somewhat 
larger than the size of 7 nAChR’s active pocket [7, 8]. So it 
is anticipated that if these molecules by some modification 
could better fit the active pocket and enter the brain more 
quickly, they might stimulate the 7 nAChR, and thus, they 
might be more effectively used for the treatment of AD. The 
present study was initiated in an attempt to explore such a 
possibility. 

METHODS AND THEORIES 

 For drug development, structural information of mem-
brane protein channel is a key ingredient [9, 10]. Since it is 
very difficult to crystallize membrane proteins, NMR has 
become a powerful tool to determine the structures of mem-
brane protein channels (see, e.g., [11-13]). Meanwhile, in 
order to timely acquire the desired information, many useful 
computational tools have been developed and utilized for 
drug design (see, e.g., [14-28]). In the current study, we ap-
proach the problem by using various structural bioinformat-
ics tools [29, 30] as they were quite successful in providing 
useful insights for drug development in many areas [31-41]. 
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1. The First Screening: Similarity Search and Flexible 
Alignment 

 Similarity search and flexible alignment were conducted 
as the first screening to exclude the molecules which did not 
match the template DMXBA so as to reduce the number of 
compounds to be investigated in the next step. Two data-
bases were used in the current study, namely the NCI (Na-
tional Cancer Institute) database and the GX database; the 
latter is a small database including 227 structures that were 
distilled from traditional Chinese herb. 

 Before the similarity search, the fingerprints of all the 
compounds investigated were computed. The similarity over-
lap was set at 60%. Similar screening procedure was also 
used in finding inhibitors against severe acute respiratory 
syndrome (SARS) [42-45], human immunodeficiency virus 
(HIV) [46], and AD [47], as well as for finding effective 
antibacterial agents [48]. The screening procedure led our 
focus on nearly 590 compounds, of which, however, some 
molecules were too large in size in comparison with the tem-
plate molecule and some were too strong in polarity, and 
hence were excluded for further consideration. The remain-
ing molecules were then further screened by the Lipinski’s 
“rule of 5” [18, 49], and only 100 qualified compounds (see 
Appendix A) were left to be further investigated by the 
flexible alignment. 

 Before the flexible alignment with DMXBA, the 
CHARMM22 force field [50] was used to compute the par-
tial charges of the 100 qualified compounds. During the 
process of the flexible alignment, the energies of any two 
molecules to be aligned were subject to minimization. The 
single bond’s revolving was permitted and the aromaticity, 
H-bond acceptor, H-bond donor as well as the volume of 
molecules were selected with the similarity terms. The 
alignment score, S, was automatically generated by the soft-
ware used. Generally speaking, the lower the value of S, the 
more similar the two molecules concerned.  

2. The Second Screening: Molecular Docking and Mo-
lecular Dynamics Simulation 

 Computational docking operation is a useful vehicle for 
investigating the interaction of a protein receptor with its 
ligand and revealing their binding mechanism as demon-
strated by a series of studies [7, 29, 30, 35, 42-45, 51-59]. In 
the current study, the ligand concerned was first placed at the 
active pocket of the 7 nAChR whose atomic coordinates 
were taken from [37], and the docking program [60] was 
used to search for the most optimal conformation and orien-
tation of the ligand by randomly generating a diversity set of 
conformations of the ligand [61]. The interaction energy, 
including the electrostatic interaction energy and vdw (van 
der Waals) interaction, were computed. In this study, the 
active binding site is represented as the cavity formed within 
the interface of two 7 units [37]. The flexible docking 
method was adopted; i.e., the receptor remains rigid while 
the ligand was flexible and was able to move freely within 
the active cavity during the entire docking process. When a 
new conformation was generated, the search for the favor-
able binding configuration was performed by the TABU 
search protocol [62, 63] in a 3D docking box. Such docking 

operations were performed one-by-one for DMXBA as well 
as the 100 compounds obtained from the aforementioned 
screening procedure.  

 Those compounds with small size and most favorable 
docking results were selected for further MD (molecular 
dynamics) simulations. The MD study has made it possible 
to thoroughly search the conformational space and investi-
gate the motion trajectory of the molecular interaction sys-
tem under some specified thermodynamic conditions (e.g., 
constant temperature or constant pressure). The MD simula-
tions were triggered by hydrogen bond breaking and making 
events of the ligand and receptor interactions, and the results 
thus obtained could provide further conformational searching 
information in space. The simulations were conducted under 
the NPT ensemble (300K and normal pressure) and lasted for 
500 ps. The MD simulations performed by the in-house 
software called SAMM (Shanghai Molecular Modeling), and 
the parameters of CHARMm22 [50] force field were used 
for the flexible alignment, docking procedure and MD simu-
lation. 

3. Optimization and Modification of gx-50 

 The molecule gx-50 is one of the drug candidates ob-
tained in the above first two steps. According to the docking 
and MD simulation results, it was observed that some mole-
cules (such as gx-180, gx-51, and gx-52) in the GX database 
exhibited good affinity for the 7 nAChR, it is worthwhile to 
study gx-50 for more details. 

 In order to explore the structure-activity relationship and 
find better compounds, we conducted the modification of gx-
50 by designing its homologues and bioisosters [64]. The 
molecules thus generated are shown in Fig. (1), where panel 
(A) is for its homologues (schemes 1-7) and panel (B) for its 
bioisosters (schemes 8-12). All these molecules were respec-
tively docked at the interface of two 7 subunits in order to 
determine their affinity for the 7 nAChR.  

RESULTS AND DISCUSSION 

 The interaction energies obtained by docking the tem-
plate molecule DMXBA and the 100 qualified compounds to 
the 7/ 7 subunit interface are also given in Appendix A,

where the binding energy is U
binding

= U
ele
+ U

vdw
, i.e., 

the sum of the electrostatic interaction and the van der Walls 
interaction. From the 101 compounds listed in Appendix A,
21 compounds (including DMXBA) were singled out as hav-
ing lower binding energy than the others (see Table 1).  

 Shown in Fig. (2) are the structure of the template mole-
cule (panel A) and a close view of its interactions (panel B)
with the residues around the active cavity of the receptor 
based on the MD simulation results. Generally speaking, the 
lower the binding energy, the better the ligand is matched 
with the receptor. Hence, a compound having a lower bind-
ing energy with the receptor than DMXBA may likely have 
better affinity with the receptor than DMXBA does.  

 It can be seen from Appendix A that there are 43 com-
pounds that have lower binding energy for the 7 nAChR 
than DMXBA. However, whether a molecule has high 
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Fig. (1). The analogues we designed for (A) homologues and (B) bioisosters.

Table 1. Results a Obtained by Docking DMXBA and Part of the 100 Qualified Compounds (see the Text and Appendix A) to the 
7 nAChR 

Molecule Code totalU
(kcal/mol) 

eleU
(kcal/mol) 

vdwU
(kcal/mol) 

ligandU
(kcal/mol) 

bindingU
(kcal/mol) 

Numbers of H 
Bond 

aido1698 44.68 -1.55 -20.49 66.72 -22.04 1 

open3d-77464 47.36 -1.91 -16.09 65.36 -18.01 3 

gx-50 72.03 3.06 -9.33 78.31 -6.28 3 

cana-36993 82.91 1.63 -5.26 86.54 -3.63 1 

gx-51 365.32 -1.44 4.34 362.42 2.90 2 

open3d-41249 87.35 -0.70 7.72 80.33 7.02 1 

gx-52 75.27 -0.71 9.97 66.02 9.25 4 

133573 129.80 0.49 16.79 112.52 17.28 1 

aido5682 104.66 -0.45 22.26 82.85 21.81 2 

198860 87.38 3.79 18.06 65.53 21.86 1 

aido5758 112.78 4.40 17.90 90.48 22.30 1 

80835 137.42 -1.10 33.31 105.21 32.21 1 

gx-180 86.87 -3.60 39.34 51.14 35.74 4 

open3d-19047 133.22 -2.82 40.50 95.54 37.68 1 

open3d-99008 179.72 1.36 61.34 117.02 62.70 3 

open3d-99662 172.55 -3.74 82.13 94.16 78.39 1 

aug00-2d-14717 205.76 -0.84 84.10 122.50 83.26 1 

aido42661 228.06 1.39 97.44 129.22 98.83 1 

open3d-51265 280.58 1.83 101.66 177.10 103.49 3 

open3d-60247 651.67 1.13 111.14 539.40 112.27 2 

DMXBA 222.64 0.49 120.35 101.80 120.84 2 

a

eleU ,
vdwU , and

ligandU stands for the electrostatic interaction energy, van der Waals interaction energy, and ligand energy, respectively;
bindingU is the sum of

eleU and
vdwU ,

while
totalU the sum of

eleU ,
vdwU and

ligandU .
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    A             B

Fig. (2). Illustration to show (A) the template structure DMXBA, and (B) its detailed interactions with the residues around the active cavity of 
the receptor that were drawn based on the result of the MD simulation. The atoms in red, blue and grey stand for O, N and H, respectively. 
Specially, the carbon atoms in the ligand molecule are colored green. The hydrogen bonds are shown by blue dashed lines with unit of Å. 

Fig. (3). A close view of the interactions of the four gx- series compounds singled out after the MD simulations with the residues around the 
active cavity of the receptor. See the legend of Fig. (2) for further explanation. The residues involved in forming the hydrogen bonds are la-
beled in the figure. 

affinity with the receptor depends not only on the binding 
energy but also on the hydrogen bonding interactions [29, 
35, 38, 65, 66] as well as on their hydrophobic/hydrophilic 
interaction [56, 67-69]. In other words, the binding energy 
alone should not be considered as the only criterion. By care-
fully analyzing all these interactions, we have found that, 

although some compounds have quite low binding energies, 
their volumes are so small that they cannot fully occupy the 
active cavity of the receptor. This kind of molecules should 
be excluded as drug candidates. Also, as we can see from 
Appendix A, some compounds have no hydrogen bond 
formed with the receptor at all, e.g., 116378, aug-oct99-46, 

OMe

OMe

N

N

H
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Fig. (4). A close view of the interactions of the three open3d- series molecules singled out after the MD simulations with the residues around 
the active cavity of the receptor. See the legend of Fig.2 for further explanation. The residues involved in forming the hydrogen bonds are 
labeled in the figure. 

Table 2. The Interaction Energies and the Hydrogen Bonds Formed by Docking the 12 gx-50 Analogues of Fig.1 to the Receptor 

No. 
U_ele 

(kcal/mol) 

U_vdw 

(kcal/mol) 

U_binding 

(kcal/mol) 

U_ligand 

(kcal/mol) 

H Bond 

Length (Å) 
H Bond  Donor H Bond Acceptor 

1 0.07  -7.93  -7.86  78.83  2.94 Lys192 C O

2 -0.88 18.17 17.29 87.73 2.54 -NH2 Gln117 

3 -0.17  115.03  114.86  107.84  3.10 -NH2 Ser148 

2.58 Lys192 -OCH3

2.90 -NH2 Cys191 

3.85 Glu193 -OCH3

4 1.58 1.63 3.21 75.57 

3.04 Trp149 C O

5 0.58  35.59  36.17  110.40  2.82 -NH2 Tyr188 

6 -1.86  12.32  10.46  74.09  — — — 

7 0.08  511.83  511.91  99.88  2.37 Leu119 -OCH3

8 -0.98  -13.50  -14.47  81.44  3.21 Gln57 -OCH3
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(Table 2. Contd….) 

No. 
U_ele 

(kcal/mol) 

U_vdw 

(kcal/mol) 

U_binding 

(kcal/mol) 

U_ligand 

(kcal/mol) 

H Bond 

Length (Å) 
H Bond  Donor H Bond Acceptor 

3.04 Trp149 -OCH3

9 3.54 23.57 27.11 130.15 
2.93 Tyr195 -OCH3

10 1.07 -4.79 -3.73 67.44 — — — 

1.83 -NH2 Trp149 

1.67 

NH2

Tyr188 

2.62 

NH2

Tyr93 

11 -2.44 63.91 61.47 78.56 

3.01 Lys192 -OCH3

3.11 Leu119 C=S 
12 2.55 -14.77 -12.22 78.83 

2.67 -NH2 Trp149 

Appendix A. Resultsa obtained by docking DMXBA and the 100 qualified compounds (see text) to the 7nAChR. The first 
column is the molecule code (those beginning with ‘gx’ are the molecules from the GX database while others are from the NCI 
database). The result of DMXBA is shown in bold-face type. 

Molecule Code totalU
(kcal/mol) 

eleU
(kcal/mol) 

vdwU
(kcal/mol) 

ligandU
(kcal/mol) 

bindingU
(kcal/mol) 

Numbers of Hy-
drogen Bond 

aido1698 44.68 -1.55 -20.49 66.72 -22.04 1 

cana-25948 39.65 2.70 -21.18 58.13 -18.48 0 

open3d-77464 47.36 -1.91 -16.09 65.36 -18.01 3 

aug00-2d-46041 44.90 0.88 -9.10 53.12 -8.22 0 

gx-50 72.03 3.06 -9.33 78.31 -6.28 3 

aug00-2d-52484 56.84 -1.42 -3.55 61.80 -4.96 0 

cana-36993 82.91 1.63 -5.26 86.54 -3.63 1 

aug00-2d-46946 61.67 2.20 -5.61 65.07 -3.40 0 

cana-3563 57.95 1.95 -4.40 60.40 -2.44 0 

116378 74.23 0.34 -1.51 75.40 -1.17 0 

gx-51 365.32 -1.44 4.34 362.42 2.90 2 

aug-oct99-46 90.63 1.44 5.14 84.05 6.58 0 

211561 104.74 -0.48 7.43 97.79 6.95 0 

open3d-41249 87.35 -0.70 7.72 80.33 7.02 1 

gx-52 75.27 -0.71 9.97 66.02 9.25 4 

diversity-1416 63.21 0.94 9.33 52.94 10.26 0 

133573 129.80 0.49 16.79 112.52 17.28 1 

aido5682 104.66 -0.45 22.26 82.85 21.81 2 
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(Appendix A. Contd….) 

Molecule Code totalU
(kcal/mol) 

eleU
(kcal/mol) 

vdwU
(kcal/mol) 

ligandU
(kcal/mol) 

bindingU
(kcal/mol) 

Numbers of Hy-
drogen Bond 

198860 87.38 3.79 18.06 65.53 21.86 1 

aido5758 112.78 4.40 17.90 90.48 22.30 1 

cana-21613 92.09 1.89 28.97 61.24 30.85 0 

80835 137.42 -1.10 33.31 105.21 32.21 1 

gx-180 86.87 -3.60 39.34 51.14 35.74 4 

open3d-19047 133.22 -2.82 40.50 95.54 37.68 1 

138360 161.50 -1.62 40.13 123.00 38.51 0 

aug00-2d-197568 122.04 0.32 38.73 82.99 39.05 0 

aido5683 121.09 1.38 41.22 78.49 42.60 0 

aug00-2d-10419 139.85 2.46 40.86 96.53 43.32 0 

aug00-2d-110397 200.67 5.40 38.74 156.53 44.14 0 

aug00-2d-43675 102.83 -1.76 46.15 58.44 44.39 0 

gx-138 66.75 11.31 37.97 17.48 49.28 0 

open3d-83128 169.26 -0.07 52.89 116.44 52.82 0 

cana-3412 152.19 1.94 53.58 96.67 55.52 0 

open3d-99008 179.72 1.36 61.34 117.02 62.70 3 

aug00-2d-21856 163.52 -0.58 72.30 91.80 71.72 0 

aug00-2d-79612 277.49 -2.76 78.92 201.34 76.15 0 

aug00-2d-194062 166.74 -0.13 76.41 90.46 76.28 0 

open3d-99662 172.55 -3.74 82.13 94.16 78.39 1 

aug00-2d-14717 205.76 -0.84 84.10 122.50 83.26 1 

aido42661 228.06 1.39 97.44 129.22 98.83 1 

open3d-51265 280.58 1.83 101.66 177.10 103.49 3 

open3d-60247 651.67 1.13 111.14 539.40 112.27 2 

134516 205.35 0.05 114.82 90.48 114.87 0 

DMXBA 222.64 0.49 120.35 101.80 120.84 2 

aido7132 232.88 -2.34 124.22 111.00 121.88 0 

aug00-2d-194063 232.43 -1.06 125.33 108.16 124.27 0 

aido6142 241.74 -0.29 124.76 117.27 124.47 0 

aug00-2d-201507 213.80 0.65 126.13 87.02 126.78 0 

open3d-69548 269.65 1.50 127.05 141.09 128.56 0 

aug00-2d-100664 445.99 1.55 130.70 313.74 132.25 0 

aido6142 217.33 -2.99 137.60 82.73 134.61 0 

diversity-304 229.32 2.94 142.27 84.11 145.21 0 
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(Appendix A. Contd….) 

Molecule Code totalU
(kcal/mol) 

eleU
(kcal/mol) 

vdwU
(kcal/mol) 

ligandU
(kcal/mol) 

bindingU
(kcal/mol) 

Numbers of Hy-
drogen Bond 

open3d-113735 247.64 0.13 145.42 102.09 145.56 0 

aug00-2d-87177 238.84 -0.39 150.22 89.01 149.83 0 

open3d-81530 274.36 2.66 147.67 124.02 150.34 0 

open3d-36726 240.15 1.72 152.28 86.14 154.00 0 

open3d-77465 302.00 -2.91 156.94 147.96 154.04 0 

aug00-2d-83522 291.94 3.37 166.71 121.87 170.08 0 

open3d-75607 334.77 2.73 171.30 160.74 174.03 0 

open3d-99661 288.36 -0.23 182.51 106.08 182.27 0 

aido21346 312.47 1.85 197.09 113.53 198.94 0 

aug00-2d-99726 368.43 -3.75 203.66 168.53 199.91 0 

aido5504 314.33 -0.87 217.76 97.45 216.89 0 

aug00-2d-83534 406.88 1.60 226.00 179.28 227.60 0 

open3d-25553 341.88 1.64 229.12 111.12 230.75 0 

open3d-19958 369.42 -1.94 237.37 133.99 235.43 0 

aug00-2d-154975 315.54 0.73 235.31 79.50 236.04 0 

aug00-2d-67766 373.92 4.15 243.00 126.77 247.15 0 

aido37806 356.42 -0.85 257.74 99.53 256.89 0 

aug00-2d-211506 548.23 -0.67 281.80 267.10 281.14 0 

aido9475 550.58 10.91 278.99 260.69 289.89 0 

aug00-2d-87296 410.76 3.17 289.37 118.21 292.54 0 

aug00-2d-114041 378.00 -2.71 295.33 85.39 292.61 0 

open3d-42138 407.86 -1.84 306.71 102.98 304.87 0 

93048 461.62 3.54 325.43 132.65 328.97 0 

aug00-2d-100685 472.83 -0.27 330.00 143.09 329.74 0 

aug00-2d-133964 451.92 1.89 329.51 120.52 331.40 0 

aug00-2d-5788 436.24 2.65 331.55 102.05 334.19 0 

cana-20059 527.82 -1.19 346.79 182.21 345.61 0 

open3d-37127 463.46 -1.16 349.84 114.78 348.68 0 

aido5579 453.42 -1.21 356.97 97.66 355.76 0 

aug00-2d-249127 530.65 -1.02 434.62 97.05 433.60 0 

open3d-116530 785.87 0.01 567.47 218.39 567.48 0 

139117 855.32 0.67 575.83 278.83 576.49 0 

aug00-2d-83502 1177.59 -0.20 587.00 590.79 586.80 0 

aido15991 796.04 0.74 605.87 189.43 606.61 0 
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(Appendix A. Contd….) 

Molecule Code totalU
(kcal/mol) 

eleU
(kcal/mol) 

vdwU
(kcal/mol) 

ligandU
(kcal/mol) 

bindingU
(kcal/mol) 

Numbers of Hy-
drogen Bond 

aug00-2d-61779 707.66 -0.58 624.44 83.80 623.86 0 

open3d-75293 1167.85 0.52 757.84 409.50 758.36 0 

aug00-2d-156466 1182.11 -0.87 867.93 315.04 867.07 0 

aido42660 1044.55 -1.12 911.77 133.91 910.64 0 

65578 1250.48 -1.16 1079.84 171.81 1078.68 0 

aug00-2d-83536 1494.54 -1.14 1155.32 340.36 1154.18 0 

aido14351 1372.75 1.46 1217.88 153.41 1219.34 0 

aug00-2d-80642 1396.77 0.21 1256.28 140.28 1256.49 0 

aido2936 2204.85 1.04 1275.30 928.51 1276.35 0 

open3d-92327 1582.33 -1.11 1430.38 153.05 1429.28 0 

aug00-2d-184056 1780.01 -2.33 1481.50 300.83 1479.17 0 

aug00-2d-116383 2262.50 1.40 1619.33 641.78 1620.72 0 

aido15987 1981.29 1.28 1673.08 306.94 1674.36 0 

aug00-2d-249066 1988.48 0.67 1860.15 127.65 1860.83 0 

aido6569 7264.30 1.96 5334.16 1928.17 5336.13 0 

a

eleU ,
vdwU , and

ligandU stands for the electrostatic interaction energy, van der Waals interaction energy, and ligand energy, respectively; 
bindingU is the sum of

eleU and
vdwU ,

while
totalU the sum of

eleU ,
vdwU and

ligandU .

Appendix B. The structures of the 20 compounds with hydrogen bonds formed with the receptor after the docking operation.  
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211561, aug00-2d-10419, aug00-2d-43675, etc. Those com-
pounds with hydrogen bonds formed with the receptor are 
the following 20 compounds: aido1698, open3d-77464, gx-
50, cana-36993, gx-51, open3d-41249, gx-52, 133573, 
aido5682, 198860, aido5758, 80835, gx-180, open3d-19047, 
open3d-99008, open3d-99662, aug00-2d-14717, aido42661, 
open3d-51265 and open3d-60247. The structures of these 
molecules are listed in Appendix B. Eleven of them formed 
only one hydrogen bond while the other nine formed two or 
more.  

 The nine molecules that have formed two or more hydro-
gen bonds with the 7 receptor are: open3d-77464, gx-50, 
gx-51, gx-52, aido5682, gx-180, open3d-99008, open3d-
51265 and open3d-60247. Such nine molecules were further 
investigated by means of MD simulations. After the MD 
simulation, the corresponding hydrogen bond numbers be-
came 0, 2, 1, 2, 0, 6, 4, 3, and 4, respectively. By removing 
those with hydrogen bond disappearing, we have the follow-
ing seven compounds: gx-50, gx-51, gx-52, gx-180, open3d-
99008, open3d-51265, open3d-60247. From the seven com-
pounds, four belong to the gx-series and three to the open3d-
series. A close view of the interactions for the four gx-series 
compounds with the residues around the active cavity of the 
receptor is given in Fig. (3), while that for the three open3d-
series compounds is given in Fig. (4). In both figures, the 
residues involved in forming the hydrogen bonds are labeled.  
 As mentioned above, compounds 1-7 shown in Fig. (1A)
are the homologues we designed. Their docking results are 
given in Table 2 with indexes 1-7, respectively. It is obvi-
ously that the methoxyl group plays a critical role as a hy-
drogen bond acceptor and the acidamide group is also impor-
tant in forming hydrogen bond with the 7 receptor. The 
differences in the carbon chain (including the length of the 
carbon chain, either linear alkyl chains or branched alkyl 
chains or alkene chains) will affect the locations of both the 
acidamide and the methoxyl in the 7 receptor, and thus will 
affect the number of hydrogen bonds formed between the 
ligand and the 7 receptor. It will also affect the interaction 
energy, especially the van der Waals interaction energy 
through its volume and geometry shape.  

 Compounds 8-12 shown in Fig. (1B) are the bioisosters 
of gx-50. Their docking results are given in Table 2 with 
indexes 8-12, indicating that a suitable substituent in R3 can 
also decrease the binding energy. However, the influence on 
the electrostatic interaction energy is not quite obvious as 
expected. 

Table 2 shows that some of the analogues (e.g. Nos.4 and 
11) have formed four hydrogen bonds with the receptor in 
contrast to three formed by gx-50 (see Table 1), meaning that 
they have even stronger hydrogen bond interaction than gx-
50.  

CONCLUSION 

 It is deduced through this study that the following seven 
compounds present high chances to become lead candidates 
for the development of AD therapy: gx-50, gx-51, gx-52, gx-
180, open3d-99008, open3d-51265, open3d-60247 (Fig. 3
and Fig. 4). However, the molecule gx-180 may be of too 
strong polarity to infiltrate the meninges.  

 The docking results from the gx-50 analogues may pro-
vide useful clues for the structure-activity relationship inves-
tigation. Some of them may be worthwhile to be tested by 
experiments to further investigate their effects. In this regard, 
an important fact that needs to be considered is that although 
these compounds may bind to the 7 nAChR binding pocket 
with high affinity, they not necessarily will trigger receptor 
gating, a complex mechanism where ligand binding produces 
a conformational change in the extracellular portion of the 
receptor that is transmitted to the transmembrane domain, 
specifically moving the M2 transmembrane segments, which 
are the most important structural factors for ion channel ac-
tivity [70]. In other words, we have to experimentally deter-
mine which compound activates the 7 nAChR and which 
compound behaves as a high-affinity competitive antagonist. 
The present study was focused on computational approaches, 
particularly from the angle of structural bioinformatics  
and molecular dynamics. The relevant experimental work is 
currently underway in collaboration with Prof. Zhongdong 
Qiao and Hugo Arias's laboratory. The results will be re-
ported elsewhere. 
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